Why MongoDB thinks better retrieval — not bigger models — is the key to trustworthy enterprise AI

Bullish 50.0
Agentic systems and enterprise search depend on strong data retrieval that works efficiently and accurately. Database provider MongoDB thinks its newest embeddings models help solve falling retrieval quality as more AI systems go into production.As agentic and RAG systems move into production, retrieval quality is emerging as a quiet failure point — one that can undermine accuracy, cost, and user trust even when models themselves perform well.The company launched four new versions of its embeddings and reranking models. Voyage 4 will be available in four modes: voyage-4 embedding, voyage-4-large, voyage-4-lite, and voyage-4-nano.  MongoDB said the voyage-4 embedding serves as its general-purpose model; MongoDB considers Voyage-4-large its flagship model. Voyage-4-lite focuses on tasks requ
Read Source Login to use Pulse AI

Pulse AI Analysis

Pulse analysis not available yet. Click "Get Pulse" above.

This analysis was generated using Pulse AI, Glideslope's proprietary AI engine designed to interpret market sentiment and economic signals. Results are for informational purposes only and do not constitute financial advice.