Why reinforcement learning plateaus without representation depth (and other key takeaways from NeurIPS 2025)
Bullish
71.7
Every year, NeurIPS produces hundreds of impressive papers, and a handful that subtly reset how practitioners think about scaling, evaluation and system design. In 2025, the most consequential works weren't about a single breakthrough model. Instead, they challenged fundamental assumptions that academicians and corporations have quietly relied on: Bigger models mean better reasoning, RL creates new capabilities, attention is “solved” and generative models inevitably memorize.This year’s top papers collectively point to a deeper shift: AI progress is now constrained less by raw model capacity and more by architecture, training dynamics and evaluation strategy.Below is a technical deep dive into five of the most influential NeurIPS 2025 papers — and what they mean for anyone building real-wo
Pulse AI Analysis
Pulse analysis not available yet. Click "Get Pulse" above.
This analysis was generated using Pulse AI, Glideslope's proprietary AI engine designed to interpret market sentiment and economic signals. Results are for informational purposes only and do not constitute financial advice.